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Calibrated Spline Estimation of Detailed Fertility 

Schedules from Abridged Data 
 
 

ABSTRACT 
 
OBJECTIVE 
 

I develop and explain a new method for interpolating detailed fertility 
schedules from age-group data. The method allows estimation of fertility 
rates over a fine grid of ages, from either standard or non-standard age 
groups. Users can calculate detailed schedules directly from the input 
data, using only elementary arithmetic.   
 
METHODS 

 
The new method, the calibrated spline (CS) estimator, expands an 
abridged fertility schedule by finding the smooth curve that minimizes a 
squared error penalty. The penalty is based both on fit to the available 
age-group data, and on similarity to patterns of 1fx schedules observed in 
the Human Fertility Database (HFD) and in the US Census International 
Database (IDB). 
 
RESULTS 
 

I compare the CS estimator to two very good alternative methods that 
require more computation: Beers interpolation and the HFD's splitting 
protocol. CS replicates known 1fx schedules from 5fx data better than the 
other two methods, and its interpolated schedules are also smoother.   
 
CONCLUSIONS 
 
The CS method is an easily computed, flexible, and accurate method for 
interpolating detailed fertility schedules from age-group data.  
 
COMMENTS 
 

Data and R programs for replicating this paper’s results are available 
online at http://calibrated-spline.schmert.net   
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1. Introduction 

 Demographers like precise data for exact ages, but unfortunately 

we often get the opposite – noisy sample estimates aggregated into wide 

age groups.  Worse, sometimes the age groups do not cover the entire 

range of interest for the behavior under study. With abridged, partial, or 

noisy data, demographic calculations often require interpolation and 

extrapolation of age-specific rates.  

In this paper I introduce a method for fitting detailed fertility 

schedules to coarse, possibly noisy data. The method exploits a large new 

dataset, the Human Fertility Database (HFD), to identify empirical 

regularities in fertility schedules by single years of age 12-54. It then uses 

these regularities in a penalized least squares framework to produce 

simple rules for expanding grouped data (usually 5fx estimates) into 

detailed rates over an arbitrarily fine grid of ages that may extend outside 

the range of the original data (for example, below age 15 or above age 

50).  

The new method uses spline functions as building blocks, and 

identifies smooth fertility schedules that match group-level data closely 

while also conforming to patterns observed in the HFD.   I call the result 

of the procedure a calibrated spline (CS) schedule. Its derivation uses 

some rather dense matrix algebra, but the end result is exceedingly 

simple: basic arithmetic with the grouped data and a set of predetermined 

constants.   
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2. Notation and Derivation of the Calibrated Spline Estimator 

 In the next two sections I explain and derive the CS estimator. 

Readers uninterested in the mathematical details may, without difficulty, 

skip ahead to the penultimate paragraph of the next section, beginning 

with The key point is….   

Suppose that the fertility schedule can be well approximated by a 

weighted sum of K continuous basis functions 
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where bi΄is a 1xK vector containing the value of each basis function at 

a=ai, and B is thus an NxK matrix of known constants.  

In general, the {ai} grid can be arbitrarily fine, over any age range 

of interest, and there are many possible choices for the number and form 

of basis functions {bk}. In the calculations in this paper, α=12, β=55, 

N=86, ∆=.50, there are separate fertility rates for intervals centered at 

12.25, 12.75,…54.75. I use quadratic B-spline basis functions (de Boor 

1978, Eilers and Marx 1996) over uniform knots at two-year intervals.1 

                                                 
1 Specifically, basis functions come from the bs() function in R (R Core Development Team 2011), 
with arguments x=seq(12.25, 54.75, .50), knots=seq(12,54,2), and degree=2. I retain the third through 
twenty-first columns of the resulting matrix as an 86x19matrix B.  
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 When fertility data is reported as averages for age groups (call the 

groups A1…Ag), we need multipliers for aggregating f. The Nx1 vector f is 

related to the g group averages by  
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where G is g x N with )(/#][ ijijij AaAaIG ∈∈= , and I[·] is a 0/1 indicator 

function. The fine grid f is similarly related to single-year rates by  
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3. Objective and Estimation Strategy 

Suppose that we have a g x 1 vector of sample estimates for age 

group averages. Call this vector y. We want to estimate the K spline 

weights w (and ultimately, the N elements of the discretized schedule f) 

from the g estimates in y. This requires additional identifying information 

of some kind.  

I propose two criteria for a good schedule f: it should (1) closely fit 

the observed data y, (2) have an age pattern similar to known schedules 

– specifically, to schedules downloaded from the Human Fertility Database 

(HFD 2012) and in the US Census International Database (Schmertmann 

2003: File III). For these criteria, which I call fit and shape respectively, 

one can construct vectors of residuals that should be near zero for good 

schedules.  These vectors are 
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The M matrix for shape residuals has a complicated construction, 

but a simple interpretation.  Construction is as follows.  I first assemble a 

43x530 matrix F,  comprising 304 single-year ASFR schedules from the 

HFD over ages 12…542, plus an additional 226 estimated single-year 

schedules from the US Census International Database (IDB) using the 

quadratic spline model and coefficients from Schmertmann (2003:File 

III).3 Singular value decomposition F=UDV' yields orthonormal principal 

component vectors in U’s columns. The first three of these columns (call 

this 43x3 matrix X) account for approximately 95% of the variation in F, 

in the sense that projections of any single-year schedule s onto the 

column space of X have small errors 

(6)  ( )ssse PI −=−= 43

)
 

where P= X(X'X)-1X' is the projection matrix for the column space of X. 

Defining M=(I43-P), shape residuals in Equation (5) represent the 

portion of a single-year schedule that is unexplained by linear 

combinations of principal components. In other words, shape residuals εs 

in Equation (5) are large for single-year schedules that have age patterns 

                                                 
2 The HFD version that I used has 1480 single-year schedules, many of which are from the same 
country in consecutive calendar years. In order to limit the overcounting of highly correlated schedules, 
I used every fifth year from each population – e.g., Austria 1953, 1958, …, 2008, Bulgaria 1949, 1953, 
…, 2009, and so on. 
3 It is slightly clumsy to split the five-year IDB schedules into approximate single-year schedules in 
order to include them in the analysis, but adding these schedules is important. The HFD does not yet 
include countries from Africa and Asia that have very distinct age patterns – in particular African 
schedules often have relatively high fertility at ages 35+, and some East Asian schedules have 
extremely low fertility at ages below 25. Estimation of SVD principal components from a matrix that 
includes the wider variety of patterns in the IDB produces a much more representative set of “typical” 
age schedules. 
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unlike those observed in the HFD and IDB.4 

 Each criterion can be converted into a scalar index of a schedule’s 

“badness” by calculating an appropriately weighted sum of squares. These 

scalar penalty terms have generic form  

(7)  },{1 sfcP cccc ∈′= − εε V  

where Vc = E[εcεc'] is the covariance of εc.  

The covariance matrix of fitting errors εf can be approximated 

logically. Supposing that sample estimates y come from groups with 2000 

women at each single year of age, and that a typical rate in a five-year 

interval is about 0.10, then with independent sampling errors across 

groups the covariance of εf is
5 

 (8)  gfff xE IV 6102)( −=′= εε  

These assumptions are crude, but the results are not very sensitive to 

them.  The main point is that with large sample sizes, schedules that fit 

age group averages poorly get extremely heavy penalties.   

 For the covariance of shape residuals, we refer to the single-year 

schedules in the HFD.  For each of the 1480 schedules (s) in the HFD 

single-year data, one can calculate es=Ms. The average outer product of 

these HFD shape residuals serves as a covariance estimate: 

(9)  )( sss ee ′=V  

                                                 
4 More precisely, a schedule f has large shape residuals when Sf lies far from the column space of X. It 
is possible for f to have low shape residuals even if it is unlike any observed schedule, if f is well 
approximated by a combination of principal components that has no counterpart in the database.  
5 The calculation assumes that the number of births (B) to 5W women in a five-year age group with true 
rate f is a Poisson random variable with mean and variance 5Wf. A sample estimate yk= B/5W therefore 
has variance f/5W.  I assume 5W=10000, somewhere between the typical sizes in censuses and surveys. 



 8 

Vs provides information about which ages are likely to have large or small 

residuals, and about the age patterns among those residuals.6 

Summing the penalties produces a single index that is appropriately 

calibrated to the available information about errors7: 
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where 
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Because C1 is positive definite, expression in Equation (10) has a unique 

minimum when weights are 

(13) yyw wKCC == −
2

1
1*   

Thus the combination of basis function that minimizes the joint criterion in 

Equation (10) is a vector that I call the calibrated spline (CS) fit: 

(14) yywf w KKBB === **   

The key point is that this complex derivation leads to a simple 

result: the optimal schedule f is a linear function of the observed data y. 

The N x g matrix K contains predetermined constants, so that can write 

                                                 
6 Adding a small constant to each diagonal element of Vs before inverting stabilizes results 
considerably. I add 0.1 times the median value of the diagonal elements from Equation (9). 
7 There is also a natural Bayesian interpretation for this index: the fitting penalty comes from the log 
likelihood of a multivariate normal distribution, and the shape penalty terms come from an improper 
multivariate normal prior. 
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the CS vector f* as a weighted sum of g columns: 
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In principle, this framework allows a demographer to create simple 

arithmetical rules for transforming fertility estimates from any set of g age 

groups into a schedule over an arbitrarily fine grid of N rates over any age 

span of interest.  The method is particularly simple because the 

“parameters” for the empirical model are the estimated age-group fertility 

rates themselves, so that fitting the model requires only multiplication and 

addition. 

 

4. Example Fits with IDB and HFD data 

 The CS method outlined above works for any set of age groups, but 

I deal with two specific examples in the rest of this paper – cases in which 

(a) data are available for g=7 age groups 15-19 through 45-49, as in the 

US Census International Database (IDB) and many other datasets, or (b) 

data are available for g=9 five-year age groups 10-14 through 50-54, as 

in the HFD. For the g=7 case, the 86x7 matrices of constants K and Kw 

appear in comma-delimited supplemental files K7.csv and Kw7.csv, 

respectively; for the g=9 case, the corresponding 86x9 matrices appear in 

K9.csv and Kw9.csv. Readers can also adapt the supplemental programs 

to construct constants for other combinations of age grids and age groups.  
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Figure 1. Empirical basis functions for a fitted schedule at half-year intervals over [12,55]. Each 
line represents one column of K. Input data are estimated average rates for five-year age groups 
(g=7 and g=9 in top and bottom panels, respectively). 

 

Figure 1 illustrates K for the g=7 and g=9 cases, by plotting each 

column as a function of age. For example, a unit increase in estimated 5f15 

changes f* values at various ages by the height of the line labeled “15”. A 

unit increase in estimated 5f20 changes f* according to the line labeled 

“20”, and so on. Note that the range of estimated fertility f* may extend 

beyond that spanned by the input data: in the g=7 case the procedure 

produces estimated ASFRs below age 15 and above age 50, based on 

known regularities in the age pattern of rates.  

 Using Equation (14) or (15), basis functions in Figure 1 are 

multiplied by the observed y values and then summed to produce 

complete CS schedules over [α,β]. The top panel of Figure 2 illustrates the 

expansion of a set of g=7 five-year estimates into half-year intervals, 

using IDB data from Uruguay. The input data for Uruguay are  
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 YURU = 10-3 x (49 116 135 99 54 16 2)' 

Multiplying these values by the columns of K and summing produces an 

86x1 vector f*=Ky for rates at half-year intervals over 12-55, shown in 

the top panel.  

 
Figure 2. Calibrated spline (CS) schedules for Uruguay 2002 (g=7, top panel) and Austria 1952 
(g=9, bottom panel), estimated at half-year intervals over [12,55]. Input data y in both cases are 
five-year rates in the histograms. Large circles represent the average of the CS schedule over a 
five-year interval. Small dots in the bottom panel represent the original single-year data from 
Austria, from which the five-year rate vector y was calculated. 
 

 By comparing the height of the histogram to that of the large dots, 

one can see that the age-group averages for the CS model do not exactly 

replicate the input data. For example, the average of the CS schedule over 

ages 35-39 in Uruguay is slightly lower than the original 5f35 value of .054. 

This occurs because minimizing the penalty index in Equation (10) 

requires tradeoffs between model fit and the shape of schedule. The 

tradeoff for Uruguay was typical, in the sense that over all 226 IDB 

schedules, Uruguay’s mean squared fitting error was closest to the 
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median: half of IDB schedules have better CS fits to the 5fx data, and half 

have worse.    

 The bottom panel of Figure 1 illustrates the CS schedule for 

Austria’s 1952 period fertility, calculated from g=9 five-year rates for age 

groups 10-14 through 50-54: 

    YAUT1952 = 10-3 x (.14 34 118 116 82 46 16 1 .02)' 

In this case one can check the accuracy of the CS fit, because Austria 

1952 is one of 586 HFD schedules with 1fx values over x=12…54 that 

come directly from original data (rather than being interpolated from 5fx or 

other group averages). These original 1fx values appear as black dots in 

the lower panel of Figure 1, and it is clear that for this schedule the CS fit 

to the histogram matches the single year data well: the root mean 

squared error (RMSE) across all 43 ages is .0021. This is identical to the 

median RMSE over all of the 586 complete single-year schedules in the 

HFD, so that the Austria 1952 fit is also typical: half of CS fits from five-

year data match the original single-year schedule less accurately, while 

half are more accurate.8   

 

5. Comparative Accuracy of CS vs. Other Methods 

 Researchers from Columbia University and the UN Population 

Division (Liu et al. 2011) recently used HFD data to compare the accuracy 

of several interpolation methods for fertility schedules. They concluded 

that the best overall method for recovering single-year age-specific rates 

                                                 
8 99% of fitted single-year rates with the CS model are within .01 of the equivalent HFD data. The 
largest CS fitting error over the 586 complete single-year schedules is for 19-year-olds in East 
Germany 1965: true and fitted rates were .173 and .139, respectively.  This error arises because East 
German 1965 rates had an unusually steep rise over ages 16-20, which the CS model does not replicate 
precisely. East Germany 1965 also had the highest RMSE over all ages: .0068. 
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from five-year averages was a variant9 of Beers’s ordinary osculatory 

interpolation method (Shryock and Siegel 1975:Table C3).  

In addition, the HFD project itself has a protocol for splitting age-

group averages into single-year rates. HFD interpolation calculates the 

logit of standardized cumulative fertility Yx=ln[Fx/(TFR-Fx)] at age group 

boundaries, interpolates values between the boundaries using a Hermite 

cubic spline, and then differences anti-logits to arrive at single-year rates:   

[ ]11
1 )1()1( 1 −−−− +−+⋅= + xx YY

x eeTFRf    

Jasiolioniene et al. (2011:27-31) has additional details, and the reader 

can see my exact implementation of the protocol in the supplemental 

program files. The principal disadvantage of the HFD splitting procedure is 

that the underlying model implies an f(x) schedule that is not smooth, 

because it has discontinuous slopes at the breaks between age groups. 

The next figure illustrates this problem. 

 Because these two interpolation approaches have been selected in 

earlier “competitions”, it is valuable to compare them to the CS approach 

over a wide range of schedules10. Figure 3 offers an initial example for a 

single schedule, showing the interpolated fits from the three methods for 

Scotland in 2004, and a summary of the fitting errors.  

                                                 
9 The Beers method often generates negative rate estimates at ages <20 and 40+. In the Liu et al. 
(2011) variant, negative rates are replaced with exponential curves, which are then rescaled so that the 
five-year age group totals match the input data.   
 
10I experimented with cross-validation in the construction of the X and K matrices. For example, cross-
validated fits for Scotland came from a model built without any Scottish data, and so on for each 
country. Cross-validated results are not reported here, but they made only a trivial difference: RMSEs 
were identical to 5 decimal places, with or without the inclusion of own-country data in model 
construction. I conclude that inclusion of own-country data is not an important concern in evaluation of 
the CS model’s performance.  
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Figure 3. Alternative fits from the g=9 five-year rates for Scotland 2004. Open circles are 
interpolated 1fx values. Solid dots are original single-year data from which five-year rates were 
calculated. Bottom right panel illustrates cumulative sum of squared fitting errors over age.  
 

Several features of Figure 3 deserve mention. All three methods 

produce interpolated schedules that fit the single-year rates well. The HFD 

schedule is notably less smooth than the other two fits, because of slope 

discontinuities at the boundaries of age intervals.11 For the Scotland 2004 

schedule the CS method is generally more accurate at ages below 30, and 

unlike the other two approaches it captures the subtle inflection in rates 

the early 20s. The Beers and HFD models fit the single-year data better at 

ages 40+ (in part because of the Beers adjustment that Liu et al. make 

for negative predicted rates at ages 48-52 with these input data). Overall, 

the CS errors are smallest, and Beers errors are largest.    

                                                 
11 Discontinuities in the slope of the HFD interpolation arise by construction. In the HFD approach, 
cumulative fertility at age x is F(x)=TFR·g[Y(x)], where g(u) is a continuous function (1+e-u)-1 and Y(x) 
is a piecewise Hermite cubic spline that has (1) continuous first derivatives and (2) discontinuous 
second derivatives at age-group boundaries . As the derivative of F(x), age-specific fertility is therefore 
continuous, with discontinuous first derivatives.    
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 Moving from a single example to a global summary, Figure 4 

summarizes the errors for the three methods over all 586 HFD schedules 

with known single-year rates, disaggregated by age. Notice 

1. The vertical scale shows that average errors are very small for all 
methods.  
 

2. The sawtooth pattern of errors at ages below 35 shows that all 
interpolation methods fit single-year data better in the middle of 
five-year intervals than they do at the edges. This is an arithmetical 
property of interpolation when the underlying curve is 
approximately linear over five-year intervals: both the fitted and 
true schedules are likely to be close to the age-group average at 
the center of the age range.  
 

3. The pattern of comparative errors by age seen for Scotland 2004 in 
Figure 3 holds up across all schedules: calibrated spline fits are 
much better at ages below 40, while HFD and Beers fits (after fixing 
Beers negative values) are slightly better at ages above 40.  

 
4. Most importantly, the total of average errors (all ages combined) is 

lowest for the CS approach.  
 
 

 
Figure 4. Root mean squared fitting errors by age. Calculated over HFD cells with original 
(rather than estimated) single-year rates.  

 
It is also useful to summarize errors over different dimensions. 

Figure 5 offers a second global comparison of the methods, this time 

aggregating over ages and showing the average RMSE by country. 

Average interpolation errors are lowest for the CS method in 17 of the 20 
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populations, and for the HFD protocol in the other three (East Germany, 

Czech Republic, Netherlands). Once again, all three methods perform very 

well, and again the overall ranking places the CS method first, HFD 

second, Beers third.  

  
Figure 5. Root mean squared fitting errors by country. Calculated over HFD cells with original 
(rather than estimated) single-year rates.  Abbreviations from HFD. 

 

Table 1 provides a final comparison of the methods, with slightly 

more quantitative detail about some of the potential problems that may 

occur when interpolating rates from abridged data. Section A of the table 

contain fitting errors (·104) by age group and interpolation method, for 

(age,period,country) cells where the HFD’s 1fx values come from original 

data sources rather than from a splitting algorithm.  The CS method 

performs best overall, but at high maternal ages its fits are slightly worse 

than those of the adjusted Beers or HFD splitting algorithms.  

Section B reports measures of the roughness or wiggliness of 

interpolated schedules, summarizing second differences by age 

( ) ( )xxxx ffff 1111121 −−− +++  with root mean squared values (·104) across all 

the 1480 HFD schedules (interpolation from g=9 age groups) and all 226 
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IDB schedules (g=7). Lower index values in Section B correspond to sets 

of interpolated schedules with fewer up-and-down wiggles and fewer local 

maxima in the interpolated single-year rates. Again the CS method 

performs best, producing smoother schedules. 

Section C of Table 1 includes information on a performance criterion 

for which the CS method is inferior to the other two approaches: negative 

rate estimates. With the test data at hand, each method produces 

1706x43=73358 single-year rate estimates. The HFD splitting method 

uses logarithmic pre-processing before interpolating, so that by 

construction none of its 73358 estimates are negative. In the original 

Beers approach (not shown in the table) approximately 12% of the 

estimates are negative and 3% are below -.005. However, the Liu et al. 

variant used here eliminates all negative values through a post-processing 

algorithm.  

 

Table 1. Error summaries for alternative interpolation methods. RMSEs 
calculated over cells with known single-year data. All other calculations refer 
to interpolated fits over ages 12-54 from all 1706 available 5fx schedules (1480 
in HFD + 226 in IDB).  Shaded cells correspond to the best- performing 
method for each error criterion. 
 
 HFD Beers Calibrated Spline 
 
A. Fitting Errors (RMSE x 104) 

All Ages 34 42 27 
12-24 49 72 38 
25-34 37 36 28 

35+ 11 11 13 
 
B. Roughness of Fitted Schedule (Root Mean Squared 2nd Difference x 104) 

HFD (g=9) 61 81 40 
IDB (g=7) 152 62 42 

 
C. Negative Values (Percent of all estimated rates) 

< 0       0 0 3 
< -.0005 0 0 1 
< -.0050 0 0 0 
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In contrast, without adjustment 3% of the CS-estimated fertility 

rates are negative. Although this is of course logically impossible, the vast 

majority of these negative CS rate estimates are negligibly different from 

zero. For example, one of the 43 CS-interpolated 1fx values for the 

Scotland 2004 schedule in Figure 3 is negative (1f49 = -.0000034), but is 

so close to zero that its direct use in calculations such as TFR, mean age 

of childbearing, etc. would cause no meaningful problems. As seen in 

Section C, only 1% of CS rates are below -.0005 (i.e., negative even 

rounding to three decimal places) and none are below -.005.  

Small negative estimates are a minor problem for the CS method, 

small enough that I have not applied any post-processing to the CS rates 

in any of this paper’s tables or figures. However, it is possible to use a 

very simple post-processing procedure on CS rates – namely, after 

calculating f*=Ky, replace any negative values with zeroes. This is 

computationally much simpler than the Liu et al. post-processing 

algorithm for Beers rates, and it would not alter any of the comparisons in 

Sections B and C of Table 1.12 

In sum, all three methods are very good, but the CS method 

performs slightly better – over almost all countries, and over the ages at 

which fertility rates are highest. Interpolated CS schedules are smoother 

and fit known data better. CS calculation is also much simpler than the 

HFD splines or the Beers variant used by Liu et al. (2011), because it does 

not require complex adjustments for edge effects and negative values.  

 

                                                 
12 With truncation at zero, the Calibrated Spline column of Table 1 would remain unchanged, except 
that the percentages in Section C would all be zero, and the IDB smoothness measure would change to 
from 42 to 43. 
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6. Discussion 

 I have presented applications of the calibrated spline model for only 

two specific cases, but the general framework is extremely flexible. In 

principle one can construct expansion constants K that map input data 

from any set of age groups onto any fine grid of ages. The input age 

groups may be incomplete (e.g., {25-29,35-39,40-44,45-54}), irregularly 

spaced ({12-14,15-19,20-24,25-34,…}), or even overlapping 

({15-17,15-24,…}).   

 The CS model fits observed schedules well, outperforming some 

alternative methods that have done well in earlier research. It is also 

much simpler to estimate. Given the K constants (which in most cases are 

the ones already provided in this paper and the accompanying data files), 

fitting a detailed ASFR schedule requires only basic arithmetic. Unlike the 

Beers method and other generic polynomial fitting methods that are not 

designed specifically for fertility estimation, post-estimation tweaks for 

negative fitted rates at the highest and lowest maternal ages are rarely 

necessary. Unlike the HFD splitting protocol, it does not require the user 

to perform a multi-step mathematical procedure to get from data y to 

fitted schedule f*.  

 Although not explicitly Bayesian, the CS estimation approach makes 

heavy use of a priori information. The penalized least squares criterion 

gives priority to fertility schedules that not only fit input data well, but 

that also match historical or contemporary patterns seen in large 

databases. The technique of identifying such patterns through singular 

value decomposition of a large data array is not new in demography (for 

example, it is the basis of the Lee-Carter [1992] mortality model), but to 
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my knowledge researchers have not previously used such patterns in a 

simple, least-squares method like that presented here. 
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Appendix: Moment Calculations from Age Group Data 

 One possible use of the empirical model is estimation of moments 

of the continuous fertility schedule from grouped data. This type of 

approximation might be especially useful with indirect methods.  

Begin by defining the function 

(A1) ∫=
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where cn(x) is a g x 1 vector of known constants.  

With different (x,n) combinations, Equation (A2) produces different 

moments of the fertility function. Table A1 shows some of the calculated 

constants for the g=7 case; a more complete set of constants is available 

in supplemental file Cdata.csv.  

By definition Q0(∞) is a schedule’s total fertility (TFR), and 

Q1(∞)/Q0(∞) is its mean age of childbearing µ. In the case of the Uruguay 

2002 data shown earlier, for example, we can approximate these 

quantities as 

   TFR = Q0(∞)  ≈ 4.99(.049) + … + 1.45(.002) = 2.360 

    µ   = Q1(∞) / Q0(∞) ≈ [89.11(.049) + … + 60.21(.003)] / 2.360 =  28.04 
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Similarly, one can approximate conditional moments such as 

average parity of women 30-34 [Q0(32.5)] and the average age at which 

they had their previous births [Q1(32.5)/ [Q0(32.5)].  With the Uruguay 

data these moments would be 

    P30-34 ≈ Q0(32.5)  ≈ 4.98(.049) + … + 0.17(.002) = 1.781 

    µ30-34 ≈ Q1(32.5) / Q0(32.5) ≈ [88.14(.049) + … + 2.19(.002)] / 1.781 =  25.21 

Calculations like this can be important for time allocation with indirect methods. 

For example, from the five-year rate schedule for Uruguay, moment 

approximations imply that with a cohort fertility schedule with this shape, women 

30-34 interviewed in a survey would have had their births an average of 

32.50-25.21 = 7.29 years earlier.   

Table A1. Some c multipliers for the g=7 case 
 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
n=0 (TFR)       
       x = 17.5 1.90 -0.46 0.20 -0.03 -0.16 0.50 0.36 
       x = 22.5 5.52 2.85 -1.00 0.60 -0.34 0.02 0.11 
       x = 27.5 4.73 5.47 2.68 -0.65 -0.03 0.37 0.15 
       x = 32.5 4.98 4.95 5.33 2.70 -0.42 -0.08 0.17 
       x = 37.5 4.94 5.05 4.92 5.49 2.18 0.11 0.09 
       x = 42.5 4.85 5.12 4.89 5.15 5.01 2.89 0.41 
       x = 47.5 4.98 5.00 4.97 4.95 5.42 4.88 1.23 
       x = ∞ 4.99 4.99 4.97 4.95 5.44 4.94 1.45 
        
n=1 (TFR · µ)       
       x = 17.5 30.84 -7.40 3.19 -0.47 -2.50 7.71 5.55 
       x = 22.5 100.00 62.13 -21.41 12.42 -6.20 -1.73 0.71 
       x = 27.5 80.57 124.92 73.05 -18.63 1.23 7.20 1.65 
       x = 32.5 88.14 109.44 150.09 83.68 -10.28 -6.57 2.19 
       x = 37.5 86.59 113.06 135.82 179.67 82.04 0.78 -0.27 
       x = 42.5 82.78 115.68 134.83 165.62 194.25 112.98 12.81 
       x = 47.5 88.96 110.22 138.08 157.01 212.21 201.26 49.51 
       x = ∞ 89.11 110.13 138.09 156.65 213.10 203.75 60.21 

 

 

 

 

 


